Abstract

Wide power-performance adaptation is becoming crucial in always-on nearly real-time and energy-autonomous integrated systems that are subject to wide variability in the power availability and the performance target. Adaptation is indeed a prerequisite to assure continuous operation in spite of the widely fluctuating energy/power source (e.g., energy harvester), and to grant swift response upon the occurrence of events of interest (e.g., on-chip data analytics), while maintaining extremely low consumption in the common case. These requirements have led to the strong demand of a new breed of integrated systems having an extremely wide performance-power scalability and adaptation, beyond conventional voltage scaling or adaptive parallelism. In this context, systems being able to adapt to a wider performance-power range (“the fittest”) allow true continuous operation and adjustment to the power-performance profile required by the application (“survival”). In this talk, new techniques that drastically extend the performance-power scalability of digital circuits and architectures are presented. Silicon demonstrations of better-than-voltage-scaling adaptation to the workload are illustrated for both the data path (i.e., microarchitecture) and the clock path. Adaptation to a very wide range of energy/power availability is also discussed, presenting demonstrations of always-on systems (e.g., microcontrollers, power management units) with power down to sub-nW, and duty-cycled operation down to pW range. As an orthogonal design dimension, “just-enough” adaptation to the application-level quality requirement is shown to further extend the performance-power range by an order of magnitude or more. Under this energy-quality scaling framework, quality is treated as an explicit knob, eliminating the quality slack that is traditionally imposed by worst-case design across different applications (e.g., machine learning), contexts, datasets, and the pessimistic design margin to counteract process/voltage/temperature variations. Several silicon demonstrations are illustrated to quantify the benefits offered by wide powerperformance adaptation, and identify opportunities and challenges for the decade ahead.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call