Abstract
Abstract There is evidence that the inductive charging process is likely to be efficient in regions of the cloud that contain relatively high concentrations of large ice particles (graupel, hail, etc.) and small ice particles or supercooled droplets, but not in regions where only liquid drops are present. Because of these spatial limitations the transport of charge centers by updrafts can be expected to affect the direction and effciency of the inductive charge transfer process. On the basis of some qualitative arguments we come to the following conclusions. 1) updrafts are necessary for the inductive charge separation process to be efficient, and 2) this charge separation mechanism need not always produce a bipolar charge distribution with the positive charge center above the negative charge center, but that in the presence of strong updrafts the negative charge center may extend all the way to the cloud top.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.