Abstract

Background:JAK inhibitors have been successfully introduced in the treatment of rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other autoimmune diseases. JAK inhibition effectively reduces cytokine-mediated activation and survival of pathology-driving immune cells by targeting signaling downstream of cytokine receptors. The outcome of such immunomodulation hence will largely depend on the intrinsic expression of the four different JAKs, the cytokine environment and the targeted cell type. Comparative studies investigating the effect on B cells are lacking. In light of the use of JAK inhibitor treatment in autoantibody mediated diseases, the study of the B cell compartment represents a milestone to assess their potential.Objectives:We thus aimed to study the B cell compartment as well as B cell function under JAK inhibition in RA patients and to compare the specific effect the JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib and filgotinib (selective JAK1) on in vitro B cell activation, differentiation, proliferation, and class switch.Methods:B cell subpopulations in RA patients treated with baricitinib or tofacitinib was assessed by flow cytometric analysis of peripheral blood mononuclear cells. For in vitro studies, magnetically isolated total B cells from healthy donors were stimulated T-cell -independently with CpG and treated with scalar doses of the JAK inhibitors tofacitinib, baricitinib, ruxolitinib, upadacitinib and filgotinib. Flow cytometric analysis was performed on days 0, 3 and 6. Cytokine secretion was measured by Cytokine Multiplex Assay.Results:B cell phenotyping of RA patients treated with JAK inhibitors baricitinib or tofacitinib showed an increase in marginal zone (MZ) B cells. To investigate this further, we turned to an in vitro model of T-cell-independent B cell activation with CpG via TLR9, known to support MZ B cell expansion. Here, JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. When assessing B cell-subpopulations, we observed an altered B cell differentiation with a significant increase in MZ-like B cells under JAK inhibition, which led to a subsequent increase in plasmablast differentiation in the first days. This effect was more pronounced upon pan-JAK inhibitor treatment than JAK1 or JAK1/2 inhibition, indicating that broader JAK inhibition is associated with a stronger effect (tofa > ruxo > bari > upa > filgo).Notably, we further detected a significant dose-dependent reduction of switched memory formation, strongest with JAK1/2 inhibition (upa > ruxo > bari > tofa > filgo). Consistent with this finding, we observed decreased AID expression under JAK inhibition. Concomitantly, induction of STAT3 expression and STAT3 phosphorylation were reduced under JAK inhibition, suggesting that downstream signalling was abrogated.To assess the role of autocrine signaling in this system, we measured cytokine secretion upon JAK inhibition and found that JAK2 inhibition led to reduced IL10 secretion. This in turn resulted in an increase of inflammatory cytokines such as IL6, TNF, highlighting the importance of B cell as cytokine-secreting cell type.Conclusion:In a T-independent in vitro B cell model JAK inhibition led to a reduced total B cell number as well as reduced switched memory development, whereas MZ-like B cells were increased. Especially JAK2 inhibition strongly impaired switched memory formation. JAK inhibition does not only impact cytokine signalling but also leads to changes in cytokine secretion dynamics and amounts, potentially impacting other cell types.In conclusion, JAK inhibition has a major effect on B cell activation and maturation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.Disclosure of Interests:None declared

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call