Abstract

The thrust vector control problem is studied for an upper-stage rocket with fuel slosh dynamics. The sloshing propellant is modeled as a multi-mass-spring system. The coupled equations of motion of the spacecraft and the fuel are expressed in terms of the three dimensional spacecraft translational velocity vector, the attitude, the angular velocity, and the internal coordinates representing the slosh modes. A Lyapunov-based nonlinear feedback control law is proposed to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes. A simulation example is included to illustrate the effectiveness of the control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.