Abstract

The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary, the outlines of fresh gas zones at different moments are similar to each other. The main flow-field features under thrust vectoring cases are similar to that under the baseline condition. However, due to the heterogeneous injection system, both the height of the fresh gas zone and the pressure value of the fresh gas in the high injection pressure zone are larger than that in the low injection pressure zone. Thus the average pressure in half of the engine is larger than that in the other half and the thrust vectoring adjustment is realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.