Abstract

A numerical solution procedure using the mesh-superposition approach, known as the Chimera method, together with the OpenFOAM toolbox environment is used to compute the forces generated by large amplitude heaving and pitching foil. The possibility of fitting thrust prediction laws, based on classical potential flow theories, with the numerically computed forces is explored, for a Reynolds number of 5104. It is shown, first for a pure heaving motion and subsequently by adding a harmonic pitching motion, that theoretical scaling may be fitted to numerical time-averaged thrust data, even in the case of large amplitude motions. The thrust-prediction law is shown to still apply to pitching-rotating motions, such as those of blades in cycloidal propulsion devices, the mean pressure correction due to the additional surging motion being small. The synchronized rotation-pitching of three foils typical of a cross-flow propeller configuration is addressed as well. The numerical global thrust results are shown to be in general agreement with the theoretical prediction, but also with blade-embedded load cell measurements for an experimental device developed by the French Naval Academy Research Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.