Abstract
Linear switched-flux machines are a kind of permanent magnet machine with a passive ferromagnetic secondary. Therefore, they can achieve both a good performance and a low cost in long stroke applications. However, due to the end effect, these machines generate high detent force and on load thrust force ripples. There are several solutions in the literature that aim to minimise the thrust ripple. One of those solutions is the placement of additional poles in the ends of the machine. These can be passive, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i. e.</i> simple ferromagnetic teeth, or active, with additional magnets. The former is the most common solution in the literature. In this article, the optimal configuration of the additional poles is discussed via 4 additional pole sizing strategies, and the influence of the design variables and optimisation objectives is analysed. Then, a generic additional pole configuration is proposed, which combines a high effectiveness and a simple design. Finally, an experimental validation is carried out, and the measurements confirm the results from the optimisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.