Abstract

We computationally study thrust generation and propulsive characteristics of an elastic plate pitching and/or heaving in free stream laminar flow. The pitching is considered about the leading edge, and the Reynolds number based on the plate length and free stream velocity is 150. An in-house fluid–structure interaction (FSI) solver is employed to simulate the large-scale flow-induced deformation of the structure along with active pitching and heaving in two-dimensional coordinates. The FSI solver utilizes a partitioned approach to strongly couple a sharp-interface immersed boundary method based flow solver with an open-source finite-element structural dynamics solver. We elucidate the mechanism of the thrust generation in the rigid and elastic plate by comparing the time-variation of thrust and work done by the plate, together with the wake signatures in the downstream. The time variation of the thrust is explained using first-order scaling arguments. The computed thrust as a function of pitching frequency for the rigid pitching plate shows a similar trend as compared to the published data of rigid foils, while the elastic plate exhibits a strong influence of the flow-induced deformation of the plate. They both exhibit reverse von Kármán-like vortex shedding in the downstream. We quantify the differences in propulsive characteristics of these two plate types as a function of pitching frequency. We found that there lies an optimum pitching frequency for the elastic plate for efficient propulsion, while the rigid one outperforms the elastic plate at larger pitching frequency. This is due to the fact that the elastic plate locks in to a higher mode of vibration at a larger pitching frequency. Furthermore, the influence of mass ratio, flexural rigidity, pitching amplitude, and Reynolds number on the performance of the elastic plate is also investigated. Finally, we study the combined effect of pitching and heaving on the propulsive performance. The pitching frequency for the maximum efficiency is lesser for the combined heaving and pitching plate as compared to only heaving or only pitching. Our results provide fundamental insights into the propulsive characteristics of the elastic pitching and/or heaving plates, which could help design autonomous underwater vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call