Abstract

Driving gear of a vehicle (here a track) generates thrust as a reaction to the opposite force taken by the ground. This force causes rearward soil deformation, which is associated with vehicle slippage. The presented compression–sliding (CS) approach, based on field measurements with the original double plate (DP) meter, states that the soil deformation as a consequence to the increasing thrust occurs in two principal stages: (a) primary horizontal soil compression, which steadily increases towards the back of the contact length forming virtual soil segments among neighboring grousers and (b) secondary slide of these sheared off segments referred to as soil blocks, which may collapse under specific conditions. These two stages are separated by a transient situation when both the compression and sliding occur simultaneously. The respective compression–sliding (CS) approach enables to analyze the effect of track arrangement, design and loading on its thrust–slip characteristics. The paper also deals with situation of the existing shear plane theory in view of the CS approach and finally suggests a practical thrust–slip function complying with the CS logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.