Abstract

Through-space charge-transfer (TSCT) emitters have been extensively explored for thermally activated delayed fluorescence (TADF), but arranging various donors and acceptors into rigid cofacial conformations for various efficient TSCT TADF emitters has remained challenging. Here, we report a "fixing acceptor" design to reach various efficient TSCT TADF emitters. By chemically fixing the acceptor (benzophenone) with a rigid spiro-structure and cofacially aligning various donors with the fixed acceptor, a series of efficient TSCT TADF emitters have been developed. Single-crystal structures and theoretical calculations have verified closely packed cofacial donor/acceptor conformations and favorable TSCT in the emitters. In doped films, the emitters afford sky blue to yellow TADF emission, with high photoluminescence efficiencies up to 0.92 and reverse intersystem crossing rates up to 1.0 × 106 s-1. Organic light-emitting diodes using the emitters afford sky blue to yellow electroluminescence with high external quantum efficiencies up to 20.9%. The work opens a new avenue toward a wide variety of efficient TSCT TADF emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.