Abstract

Cognitive radio based on dynamic spectrum access has emerged as a promising technology to meet the insatiable demand for radio spectrum by the emerging wireless applications. In this chapter, the authors address the problem of throughput-efficient spectrum access in Cognitive Radio Networks (CRNs) using Coalitional Game-theoretic framework. They model the problem of joint Coalition Formation (CF) and Bandwidth (BW) allocation as a CF game in partition form with non-transferable utility and present a variety of algorithms to dynamically share the available spectrum resources among competing Secondary Users (SUs). First, the authors present a centralized solution to reach a sum-rate maximizing Nash-stable network partition. Next, a distributed CF algorithm is developed through which SUs may join/leave a coalition based on their individual preferences. Performance analysis shows that the CF algorithms with optimal BW allocation provides a substantial gain in the network throughput over existing coalition formation techniques as well as the simple cases of singleton and grand coalition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call