Abstract
In this letter, we consider non-contiguous wideband spectrum sensing (WSS) using the sub-Nyquist sampling approach. Compared to contiguous WSS which senses the entire spectrum, non-contiguous WSS has an additional task of determining the number and location of frequency bands for digitization and sensing. Since throughput (i.e., the number of sensed vacant bands) increases while the probability of successful sensing decreases with a decrease in the sparsity of digitized bands, we develop exploration–exploitation-based online learning algorithm to learn the spectrum statistics. We provide a lower bound on the number of time slots required to learn spectrum statistics after which the proposed algorithm intelligently selects a maximum possible number of frequency bands which are more likely to be vacant and hence, it is named as throughput optimized non-contiguous WSS. Simulation and experimental results using USRP testbed validate the efficacy of the proposed approach compared to the Myopic approach which has prior knowledge of spectrum statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.