Abstract

LoRa, due to its advantage of long-range communication capability, is promising for Internet of Things (IoT) and space-air-ground communications. However, the conventional MAC protocol used with LoRa is classified as an Aloha-based algorithm, which leads to drastic decrease in throughput when a huge amount of end-devices try to access the network. To achieve stable and high throughput of LoRa, we propose a design to combine the distributed queueing (DQ) and in-band-full-duplex (IBFD) technologies. The usage of DQ mechanism is benefit for fast collision resolution, while the IBFD-enabled gateway helps to reduce the heavy control overhead of DQ. The designs of access procedure and frame structure are discussed in detail. The outage probability and average throughput are evaluated under imperfect self-interference cancelation. Also, a mathematical programming method is developed to optimize the spreading factor and code rate. Numerical results show that our proposal gains an extra enhancement of 1.83-fold in throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.