Abstract

AbstractThis paper investigates the maximum throughput of a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU). The SU is assumed to be an energy harvesting node, which harvests energy packets from the environmental energy sources (e.g. solar, wind and acoustics) with a certain harvesting rate. The PU is equipped with a data buffer to store the randomly arrived data packets at its receiver. In addition to its own data buffer, the SU is equipped with another data buffer for storing the unsuccessfully decoded packets at the primary destination in a given time slot due to channel fading. Moreover, it has an energy buffer for storing the energy packets harvested from the environment. We propose a new cooperative cognitive relaying protocol that allows the SU to gain channel access when it relays a fraction of the undelivered primary packets. We consider an interference channel model [or a multipacket reception (MPR) channel model], where simultaneous transmissions can be decoded correctly at the corresponding destinations with certain decoding probabilities characterised by the complement of channel outages under interference. Our proposed protocol exploits the PU's data burstiness because of the random and sporadic packet arrival at its queue. Moreover, the proposed protocol takes advantage of the receivers' MPR capabilities. In addition, it efficiently expends the secondary energy packets under the objective of secondary throughput maximisation. Our numerical results show the benefits of cooperation, receivers' MPR capabilities and secondary energy queue arrival rate on the system's performance from a network layer standpoint. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.