Abstract

Fog computing promises to extend cloud computing to match emerging demands for low latency, location-awareness and dynamic computation. It thus brings data processing close to the edge of the network by leveraging on devices with different computational characteristics. However, the heterogeneity, the geographical distribution, and the data-intensive profiles of IoT deployments render the placement of fog applications a fundamental problem to guarantee target performance figures. This is a core challenge for fog computing providers to offer fog infrastructure as a service, while satisfying the requirements of this new class of microservices-based applications. In this article we root our analysis on the throughput requirements of the applications while exploiting offloading towards different regions. The resulting resource allocation problem is developed for a fog-native application architecture based on containerised microservice modules. An algorithmic solution is designed to optimise the placement of applications modules either in cloud or in fog. Finally, the overall solution consists of two cascaded algorithms. The first one performs a throughput-oriented partitioning of fog application modules. The second one rules the orchestration of applications over a region-based infrastructure. Extensive numerical experiments validate the performance of the overall scheme and confirm that it outperforms state-of-the-art solutions adapted to our context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.