Abstract

SummaryAn energy harvesting (EH) and cooperative cognitive radio (CR) network (CRN) is studied in this paper where CR users transmit data through a primary user (PU) channel if the channel remains idle, else an optimal number CRs helps in transmission of PU. To achieve the optimum number of CRs (ONCR) involved in cooperation, a novel scheme based on a combination of channel censoring and total error is proposed. The performance of the proposed scheme is investigated under RF harvesting scenario. The EH is dependent on sensing decision and a CR source harvests energy from PU's RF signal. The harvested energy (HE) is split into two parts: One part is used by the CR network (CRN) for its own transmission, and the other part is used for supporting PU. The effect of the energy allocation factor on total throughput is also investigated. New expressions for optimal number of CRs and throughput are developed. The effect of network parameters such as sensing time, censoring threshold, and energy allocation parameter (EAP) on throughput is investigated. Impact of distance between nodes is also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call