Abstract

Through-the-wall radar imaging (TWRI) is a sensing technology that can be used for detecting, locating, and identifying targets inside enclosed building structures. Many of the existing target classification approaches focus on single-target scene. For multi-target classification, the radar signal has to be segregated into different target components. However, target separation in TWRI is a challenging problem since the radar signals consist of both strong wall reflections and weak target echoes. Furthermore, the target signals are attenuated and distorted when propagating through the wall. In this paper, a variational model with low-rank constraint is proposed for decomposing the radar signal into target components and removing the wall returns. Experimental results show that the proposed method can effectively separate the radar signal into different target components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.