Abstract
AbstractSpheres of cholesteric liquid crystal generate dynamic patterns due to selective reflection from a helical structure subject to continuously curved boundaries. So far the patterns are investigated exclusively as function of reflections at the sphere exterior. Here it is shown that the cholesteric shells in a microfluidics produced double emulsion enable also a sequence of internal reflections if the shells have sufficiently thin top and thick bottom. While such asymmetry is promoted by buoyancy when the internal droplet has lower density than the liquid crystal, the elasticity of the cholesteric helix prefers a symmetric shell geometry, acting against gravity. This subtle balance can hide the internal reflections for long time. Eventually, however, the asymmetry is established, revealing a new class of photonic patterns characterized by colored sharp concentric rings. With the complete knowledge of the diverse light‐reflecting behavior of cholesteric liquid crystal shells, and utilizing the tunability of the structure period by, e.g., temperature, electric field, or exposure to various chemical species as well as polymer stabilization for making the shells long‐term stable, they may be developed into remarkable new optical elements for photonics, sensing, or security pattern generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.