Abstract

Oxaliplatin as a component of (Neo-) adjuvant chemotherapeutic regimens is administered to colorectal cancer patients. Unfortunately, the acquisition of resistance to this drug in nearly 90% of metastatic patients rendered it as an ineffective drug. Therefore, resistance mechanisms to this drug should be elucidated. There are different genes like GSTP1 and ABCB1 which are responsible for oxaliplatin resistance. We hypothesized that miR-129-5p, miR-302c-5p, miR-3664-5p, mir-3714 and miR-513a-3p are targeting ABCB1 gene, while GSTP1 was predicted to be the potential target of miR-3664-5p, mir-3714 and miR-513a-3p. In order to study this hypothesis, resistant colorectal cell lines were generated through intermittent exposure of HCT116, SW480 and HT29 to the increasing doses of oxaliplatin. MTT assays validated this resistance induction. Expression of ABCB1 and GSTP1 in addition to their targeting miRNAs in different cell lines were studied by quantitative real time PCR in the cell lines. Even though in comparison with HCT116 and SW480 cell lines, GSTP1 expression was reduced in resistant cells, ABCB1 expression was upregulated in these cell lines. On the other hand, HT-29 resistant cells showed elevated GSTP1 and unchanged ABCB1 levels. While miR-302c-5p level was downregulated in resistant cell lines, miR-129-5p and miR-3664-5p level showed different pattern of reduction in the resistant SW480 and HCT116 cell lines. GSTP1 level was correlated directly with miR-513a-3p and miR-3664-5p in all SW480 and HCT116 derived cell lines, however in HT-29-OXR1, GSTP1 level was correlated inversely with miR-3664-5p. In conclusion, upregulation of ABCB1 can be considered as the crucial component of poor response to oxaliplatin which is likely controlled by miR-302c-5p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call