Abstract

Extreme ultraviolet (EUV) multilayer defects result in the degradation of through-focus imaging quality. The optical proximity effect is another crucial factor that degrades the imaging quality. Both the impacts of the defects and the optical proximity effects could be mitigated by modifying the original mask patterns. A heuristic-based defect compensation method considering optical proximity correction and through-focus optimization is proposed in this paper. The edge of the mask pattern and the insertion of sub-resolution assist features (SRAFs) are optimized by covariance matrix adaptation evolution strategy (CMA-ES) to compensate for the degradation of the imaging quality with a certain defocus range. New encoding strategies for the edge pixels of the mask pattern and the SRAFs are proposed and utilized in this paper to ensure the manufacturability of the mask and the efficiency of the optimization at the same time. The rigorous database approach based on the scattering matrix is adopted to simulate the mask diffraction spectrum efficiently. Simulations verify that the through-focus imaging quality of both the defective masks with bump defects and pit defects could be obviously improved by the proposed defect compensation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call