Abstract

ABSTRACTSpent nuclear fuel from Finnish power plants is planned to be deposited deep in the crystalline bedrock in Olkiluoto, Finland. The bedrock needs to be well characterized to assess the risks inherent to the long term safety of the site. In the bedrock the possibly released radionuclides are mainly transported by water conducting fractures and their transport is retarded by diffusion and sorption. In porous materials these properties are typically linked to microscopic pore structure (pore size distribution, tortuosity and constrictivity) and chemical nature of the minerals and groundwater.In this work transport properties of veined gneiss (VGN) and pegmatitic granite (PGR) samples from Olkiluoto were studied using various through diffusion experiments and the C-14-PMMA autoradiography. Through diffusion experiments were performed on rock cores using HTO and 36Cl in water phase and He in gas phase as tracers. The effective diffusion coefficients (De) determined for the VGN were found to be dependent on the tracer molecule (De(HTO) < De(He) < De(Cl)) whereas for the PGR such a dependence was not found. The porosity distributions determined by the C-14-PMMA autoradiography revealed the difference in the pore structure between the samples. The porosity of VGN consists mostly of grain boundary pores and pores between biotite lamellae. Due to a high content of nanometer scale pores anion exclusion affected the results of 36Cl and Knudsen diffusion the ones of He for VGN. Furthermore, in the PGR micrometer scale intra- and intergranular fissures form a connected network for diffusive transport and thus all tracers diffuse at the same rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.