Abstract

With its central role in conventional BCS superconductivity, electron-phonon coupling appears to play a more subtle role in the phase diagram of the high-temperature superconducting cuprates. Their added complexity due to potentially numerous competing phases, including charge, spin, orbital, and lattice ordering, makes teasing out any unique phenomena challenging. In this review, we present our work using angle-resolved photoemission spectroscopy (ARPES) exploring the role of the lattice on the valence band electronic structure of the cuprates. We introduce the ARPES technique and its unique ability to the probe the effect of bosonic renormalization (or “kink”) on near-EFband structure. Our survey begins with the establishment of the ubiquitous nodal cuprate kink leading to how isotope substitution has shed a critical new perspective on the role and strength of electron-phonon coupling. We continue with recently published work connecting the phonon dispersion seen with inelastic X-ray scattering (IXS) to the location of the kink observed by ARPES near the nodal point. Finally, we present very recent and ongoing ARPES work examining how induced strain through chemical pressure provides a potentially promising avenue for understanding the broader role of the lattice to the superconducting phase and larger cuprate phase diagram.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.