Abstract

Thromboxane A2 (TxA2) stimulates contraction of glomerular mesangial cells. However, mesangial cell TxA2 receptors have not been previously characterized. We therefore investigated TxA2 binding and TxA2-associated signal transduction pathways in rat glomerular mesangial cells using the specific thromboxane receptor agonist (1S-[1 alpha,2 beta(5Z),3 alpha-(1E,3S)4 alpha])-7-(3-[3-hydroxy-4-(p- iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-heptenoic acid (IBOP). In these cells, [125I]BOP binding was saturable, displaceable, and of high affinity. Scatchard analysis revealed a single class of binding sites with a dissociation constant (Kd) of 293 pM and a maximal density of binding sites (Bmax) of 33 fmol/mg protein. Specific binding was inhibited by the thromboxane agonist (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U-46619) [inhibitor dissociation constant (Ki) = 297 nM] and the TxA2 receptor antagonists SQ 29548 (Ki = 1 nM) and (1R-[1 alpha(Z),2 beta,3 beta,5 alpha])-(+)-7-(5-[(1,1'-biphenyl)- 4-yl-methoxy]-3-hydroxy-2-(1-piperidinyl)cyclopentyl]-4-heptenoic acid (GR 32191) (Ki = 92 nM). Binding was also highly specific for thromboxane because prostaglandin E2 (Ki = 16 microM) and the inactive thromboxane metabolite, TxB2 (Ki = 41 microM), were approximately 1,000-fold less potent at inhibiting binding. IBOP stimulated phosphatidylinositol hydrolysis with an effective concentration of drug that produces 50% of the maximal response of 229 pM, which correlated well with the equilibrium Kd and enhanced phosphorylation of an acidic 80-kDa protein substrate for protein kinase C.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.