Abstract

We performed micropuncture studies to determine the role of thromboxane A2 in the exaggerated tubuloglomerular feedback (TGF) activity in young spontaneously hypertensive rats (SHR). Glomerular function was assessed by changes in proximal tubular stop-flow pressure (SFP) produced by different rates of orthograde perfusion through Henle's loop. Seven-week-old SHR exhibited an exaggerated TGF activity compared with Wistar-Kyoto rats (WKY) during euvolemia, confirming earlier studies. During control periods, the feedback-induced maximal SFP response (DeltaSFP) was greater in SHR (18-19 vs. 12-13 mmHg in WKY), whereas basal SFP and proximal tubular free-flow pressure were similar in both strains. In one series, the thromboxane A2 agonist U-46619 was added to the tubular perfusate for a final concentration of 10(-6) M. In WKY, DeltaSFP was increased by 100% to 26 mmHg. In contrast, DeltaSFP in young SHR was unaffected by the thromboxane A2 agonist. In other animals, the thromboxane synthase inhibitor pirmagrel (50 mg/kg) was injected intravenously to inhibit thromboxane production. In SHR, pirmagrel decreased DeltaSFP by 8.5 mmHg and reduced reactivity. Less attenuation was observed in WKY; DeltaSFP was reduced by 3 mmHg, whereas reactivity was unchanged. In other studies, tubular perfusion with the thromboxane receptor inhibitor SQ-29548 (10(-6) M) reduced DeltaSFP more in SHR (7 vs. 3 mmHg in WKY) and also decreased reactivity more in SHR (2.3 vs. 0.5 mmHg. nl-1. min-1). Coperfusion of SQ-29548 and U-46619 resulted in an 85% block of the effect of U-46619 on DeltaSFP. Tubular perfusion with the agonist U-46619 during thromboxane synthase inhibition markedly enhanced DeltaSFP in both strains, with a greater effect in WKY. These results suggest that elevated levels of thromboxane A2 in young SHR contribute to the exaggerated TGF control of glomerular function in SHR during the developmental phase of hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.