Abstract

VWF is a multimeric plasma glycoprotein that specifically recruits platelets to sites of vessel injury. VWF multimeric size is central to this function, with larger multimers being more hemostatically active. Regulation of VWF multimeric size is mediated by the plasma metalloprotease ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motifs, member 13). This enzyme can only recognize and cleave VWF when it is unraveled by rheological shear forces of the flowing blood. After the exposure of cryptic exosites, VWF recognition by ADAMTS13 involves multiple interactions that enable the protease to cleave VWF. Loss of VWF multimer size regulation caused by severe ADAMTS13 deficiency (either inherited or acquired) is associated with the microvascular thrombotic disorder thrombotic thrombocytopenic purpura (TTP). The sequelae associated with TTP are widely thought to be linked to hyperreactive circulating VWF that cause unwanted platelet aggregation in the high shear environment of the microvasculature. Diagnosis of TTP is primarily made through a combination of symptoms, analysis of plasma ADAMTS13 activity, and detection of inhibitory anti-ADAMTS13 antibodies. Current frontline treatments for TTP include plasma exchange, which serves to remove inhibitory antibodies (in acquired TTP) and provide a source of functional ADAMTS13, and steroids to treat the autoimmune component of acquired TTP. The use of anti-CD20 therapy has also exhibited encouraging results in the treatment of acquired TTP. Newer therapeutic strategies that are currently being explored or are in development include recombinant ADAMTS13, a hyperreactive ADAMTS13 variant, and anti-VWF therapy. This review discusses the basic biochemistry of VWF and ADAMTS13, their dysfunction in TTP, and therapeutic approaches for the amelioration of TTP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.