Abstract

Thrombospondin 1 (TSP1), a multifunctional, matricellular glycoprotein, is expressed de novo in many inflammatory disease processes, including glomerular disease. Short peptide fragments derived from the type I properdin repeats of the TSP1 molecule mimic anti-angiogenic and/or transforming growth factor-beta (TGF-beta)-activating properties of the whole TSP1 glycoprotein. We investigated the effects of D-reverse peptides derived from the type I domain of TSP1 in experimental mesangial proliferative glomerulonephritis in the rat (anti-Thy1 model), as well as their effects on cultured mesangial and glomerular endothelial cells. Effects of TSP peptides on proliferation of mesangial or glomerular endothelial cells in culture after growth arrest or growth factor stimulation (fibroblast growth factor-2, platelet-derived growth factor-BB, 10% fetal calf serum) were measured by [3H]thymidine incorporation assay. Adhesion of rat mesangial cells (MCs) to a TSP-peptide matrix was assayed using an attachment-hexosaminidase assay. TSP peptides were intraperitoneally injected daily in rats that had received an intravenous injection of polyclonal anti-Thy1 antibody to induce mesangial proliferative glomerulonephritis. On biopsies from days 2, 5, and 8 of anti-Thy1 disease, mesangial and glomerular endothelial proliferation, matrix expansion, mesangial activation, and microaneurysm formation were assessed. Functional parameters such as blood pressure and proteinuria were also measured. An 18-amino acid peptide (type I peptide) with anti-angiogenic and TGF-beta-activating sequences decreased mesangial and glomerular endothelial cell proliferation in vitro and in vivo and reduced microaneurysm formation and proteinuria in experimental glomerulonephritis. Analogues lacking the TGF-beta-activating sequence mimicked most effects of the type I peptide. The mechanism of action of these peptides may include antagonism of fibroblast growth factor-2 and alteration of MC adhesion. The TGF-beta-activating sequence alone did not have significant effects on mesangial or glomerular endothelial cells in vitro or in experimental kidney disease in vivo. Peptides from TSP1 may be promising therapeutics in treating glomerular disease with mesangial and endothelial cell injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call