Abstract

Soluble guanylate cyclase (sGC) is the signal transduction enzyme most responsible for mediating the effects of nitric oxide (NO). Recently, NO-independent small molecule activators of sGC have been developed that have promising clinical activities. We have shown that the secreted matrix protein thrombospondin-1 (TSP-1) binds to CD47 and potently inhibits NO stimulation of sGC in endothelial and vascular smooth muscle cells (VSMCs) and platelets. Here we show that TSP-1 signalling via CD47 inhibits sGC activation by NO-independent sGC activating small molecules. Vascular smooth muscle cells and washed human platelets were pretreated with TSP-1 (2.2 nM) in the presence of haeme-dependent sGC activators (YC-1, BAY 41-2272), and a haeme-independent activator (meso-porphyrin IX), and cGMP levels were measured. The effect of sGC activators on platelet aggregation and contraction of VSMC embedded in collagen gels was also assayed in the presence and absence of TSP-1. Thrombospondin-1 inhibited sGC activator-dependent increase in cGMP in VSMC and platelets. TSP-1 pretreatment also inhibited the ability of these agents to delay thrombin-induced platelet aggregation. TSP-1 pretreatment reduced the ability of sGC activating agents to abrogate VSMC contraction in vitro. This work demonstrates that TSP-1 is a universal inhibitor of sGC, blocking both haeme-dependent and haeme-independent activation. These data coupled with the reported increases in TSP-1 with age, diabetes, ischaemia/reperfusion, and atherosclerosis implies that the therapeutic potential of all drugs that activate sGC could be compromised in disease states where TSP-1/CD47 signalling is elevated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call