Abstract

This experiment has been carried out to observe the potential thrombolytic activity of naturally occuring phytochemicals in Ginger (Zingiber officinale) and to analyze their drug likeness property and ADME/T profile. Thrombolytic activity of Ginger has already been confirmed in laboratory experiment and this study focuses on the molecular interactions among four phytocompounds (Isovanillin, Gingerol, Beta-sitosterol and 2,6-Dimethyl-2-octene-1,8-diol) found in Ginger and Tissue Plasminogen Activator (tPA). Present experiment is largely based on computer-aided drug design protocol where the strength of interaction is described as binding energy function. Isovanillin exhibited better docking score, and so this compound might have greater thrombolytic activity than others. Moreover, Isovanillin also suggested sound drug likeness property and ADME/T profile which predicts its safeness for consumption in human body. But Beta-sitosterol violated Lipinski’s rule of five and 2, 6-Dimethyl-2-octene-1,8-diol showed the lowest affinity of binding with tPA. However, further in vivo or in vitro study may be required to confirm the thrombolytic activity of Isovanillin.

Highlights

  • Thrombolytic activity of Ginger has already been confirmed in laboratory experiment and this study focuses on the molecular interactions among four phytocompounds (Isovanillin, Gingerol, Beta-sitosterol and 2,6-Dimethyl-2-octene-1,8-diol) found in Ginger and Tissue Plasminogen Activator

  • Isovanillin suggested sound drug likeness property and ADME/T profile which predicts its safeness for consumption in human body

  • Thrombosis is usually caused by blood coagulation protein or platelet defect which leads to blockage of the circulatory vessel preventing the appropriate blood flow inside human body

Read more

Summary

Thrombosis and Its Treatment

Thrombosis generally refers to localized clotting of the blood which can occur in both arterial and venous circulation and has a great medical impact. In most of the developed country, the major cause of myocardial infarction (heart attack) and 80% of the stroke is attributed to acute arterial clotting [1]. Such complication eventually leads to death if not treated earlier. The treatment of thrombosis involves antithrombotic drugs which target the proteins involved in the coagulation cascade of human body. Administration of these drugs results in the binding of drug molecule with a target protein which promotes the clot breakdown effectively. Thrombolytic activity of Ginger is assumed to be due to the presence of one or more of these compounds [7] [8]

Mechanism of Tissue Plasminogen Activator Action in Thrombolysis
Materials and Methods
Protein Preparation
Ligand Preparation
Receptor Grid Generation
Binding Energy
Drug-Likeness Property
Discussion
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.