Abstract

Plant latex proteases (PLPs) are pharmacologically essential and are integral components of traditional medicine in the management of bleeding wounds. PLPs are known to promote blood coagulation and stop bleeding by interfering at various stages of hemostasis. There are a handful of scientific reports on thrombin-like enzymes characterized from plant latices. However, the role of plant latex thrombin-like enzymes in platelet aggregation is not well known. In the present study, we attempted to purify and characterize thrombin-like protease responsible for platelet aggregation. Among tested plant latices, Euphorbia genus latex protease fractions (LPFs) induced platelet aggregation. In Euphorbia genus, E. antiquorum LPF (EaLPF) strongly induced platelet aggregation and attenuated bleeding in mice. The purified thrombin-like serine protease, antiquorin (Aqn) is a glycoprotein with platelet aggregating activities that interfere in intrinsic and common pathways of blood coagulation cascade and alleviates bleeding and enhanced excision wound healing in mice. In continuation, the pharmacological inhibitor of PAR1 inhibited Aqn-induced phosphorylation of cPLA2, Akt, and P38 in human platelets. Moreover, Aqn-induced platelet aggregation was inhibited by pharmacological inhibitors of PAR1, PI3K, and P38. These data indicate that PAR1-Akt/P38 signaling pathways are involved in Aqn-induced platelet aggregation. The findings of the present study may open up a new avenue for exploiting Aqn in the treatment of bleeding wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.