Abstract

Preterm premature rupture of membranes (PPROM) and thrombin generation by decidual cell-expressed tissue factor often accompany abruptions. Underlying mechanisms remain unclear. We hypothesized that thrombin-induced colony-stimulating factor-2 (CSF-2) in decidual cells triggers paracrine signaling via its receptor (CSF2R) in trophoblasts, promoting fetal membrane weakening and abruption-associated PPROM. Decidua basalis sections from term (n = 10), idiopathic preterm birth (PTB; n = 8), and abruption-complicated pregnancies (n = 8) were immunostained for CSF-2. Real-time quantitative PCR measured CSF2 and CSF2R mRNA levels. Term decidual cell (TDC) monolayers were treated with 10-8 mol/L estradiol ±10-7 mol/L medroxyprogesterone acetate (MPA)±1 IU/mL thrombin pretreatment for 4 hours, washed, and then incubated in control medium with estradiol±MPA. TDC-derived conditioned media supernatant effects on fetal membrane weakening were analyzed. Immunostaining localized CSF-2 primarily to decidual cell cytoplasm and cytotrophoblast cell membranes. CSF-2 immunoreactivity was higher in abruption-complicated or idiopathic PTB specimens versus normal term specimens (P<0.001). CSF2 mRNA was higher in TDCs versus cytotrophoblasts (P<0.05), whereas CSF2R mRNA was 1.3×104-fold higher in cytotrophoblasts versus TDCs (P<0.001). Thrombin enhanced CSF-2 secretion in TDC cultures fourfold (P<0.05); MPA reduced this effect. Thrombin-pretreated TDC-derived conditioned media supernatant weakened fetal membranes (P<0.05), which MPA inhibited. TDC-derived CSF-2, acting via trophoblast-expressed CSFR2, contributes to thrombin-induced fetal membrane weakening, eliciting abruption-related PPROM and PTB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.