Abstract
The secretion of the dense granule constituents ATP, ADP, calcium, pyrophosphate (PPi), and orthophosphate (Pi), and the release of magnesium induced by thrombin and the divalent cation ionophore A23187 have been quantitated directly in gel-filtered platelets from patients with storage pool deficiency (SPD). Both the contents and the maximal amounts of the dense granule constituents secretable by thrombin were decreased in all the patients studied, while the nonsecretable, retained amounts of these substances were identical in SPD and normal platelets. In response to both thrombin and A23187, the amounts of secretable ATP and ADP were strongly correlated in the platelets of individual patients; in contrast, secretable calcium showed no correlation with the nucleotides, and significant amounts of calcium were secreted in the total absence of nucleotide secretion in the platelets of several patients. The contents of magnesium were normal in all patients, and approximately 12% of platelet magnesium was liberated by thrombin in both SPD and normal platelets. A23187 induced the release of up to 70% of the magnesium content of normal platelets, but released significantly less (46%) magnesium from SPD platelets. Platelet aggregation induced by A23187 in platelet-rich plasma was also markedly decreased in SPD platelets. The correlations among secretable dense granule constituents suggest the presence in SPD platelets of abnormal dense granule structures that sequester calcium and other constituents but little or no adenine nucleotides, and are thus consistent with a hypothesis that impaired nucleotide transport and/or storage may be the primary dense granule defect in this disorder. In addition, these results demonstrate that certain responses to A23187 are impaired in SPD platelets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.