Abstract

1. The addition of 2 x 10(8) human platelets to 8 x 10(6) polymorphonuclear leucocytes (PMNL) incubated in presence of 2.5 u ml-1 thrombin and 0.1 microM N-formyl-Met-Leu-Phe (FMLP) (or C5a or PAF) led to enhancement of leukotriene B4 (LTB4) synthesis by the PMNL (measured by h.p.l.c. as 20-hydroxy- and 20-carboxy-LTB4) from 4 +/- 1 pmol (in absence of platelets) to 26 +/- 4 pmol (mean +/- s.e.mean, n = 9). Platelets and thrombin were both essential for the enhancement of LTB4 synthesis. 2. Platelets also caused enhancement of LTB4 synthesis from (30 +/- 12 to 134 +/- 25 pmol, n = 6) when PMNL pretreated with granulocyte-macrophage colony-stimulating factor were used in similar experiments. 3. Enhancement of LTB4 synthesis was also observed (from 5 +/- 1.5 to 26.5 +/- 5 pmol, n = 9) when the supernatants of thrombin-activated platelet suspensions were added to FMLP-stimulated PMNL. 4. Supernatants of platelet suspensions activated by thrombin in presence of cyclo-oxygenase and 12-lipoxygenase inhibitors led to greater enhancement (from 5 +/- 3 to 153.5 +/- 27.5 pmol, n = 3) of LTB4 synthesis by FMLP-stimulated PMNL, suggesting that arachidonic acid itself, rather than its metabolites was responsible for the effects of platelets. 5. Addition of arachidonic acid to FMLP-stimulated PMNL at a concentration comparable to that measured in thrombin-activated platelet supernatants (0.2 +/- 0.025 microM, n = 6) mimicked the effect of platelets or platelet supernatants on LTB4 synthesis in FMLP-activated PMNL. 6. The present data indicate that under conditions of cell activation by physiological agonists, platelets can significantly increase the formation of the proinflammatory compound LTB4 in PMNL by providing arachidonic acid. These data lend support to the concept that platelet-PMNL interactions could modulate the inflammatory process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call