Abstract
Hyperdimensional computing (HDC) is a brain-inspired computing paradigm that works with high-dimensional vectors, hypervectors, instead of numbers. HDC replaces several complex learning computations with bitwise and simpler arithmetic operations, resulting in a faster and more energy-efficient learning algorithm. However, it comes at the cost of an increased amount of data to process due to mapping the data into high-dimensional space. While some datasets may nearly fit in the memory, the resulting hypervectors more often than not can't be stored in memory, resulting in long data transfers from storage. In this paper, we propose THRIFTY, an in-storage computing (ISC) solution that performs HDC encoding and training across the flash hierarchy. To hide the latency of training and enable efficient computation, we introduce the concept of batching in HDC. It allows us to split HDC training into sub-components and process them independently. We also present, for the first time, on-chip acceleration for HDC which uses simple low-power digital circuits to implement HDC encoding in Flash planes. This enables us to explore high internal parallelism provided by the flash hierarchy and encode multiple data points in parallel with negligible latency overhead. THRIFTY also implements a single top-level FPGA accelerator, which further processes the data obtained from the chips. We exploit the state-of-the-art INSIDER ISC infrastructure to implement the top-level accelerator and provide software support to THRIFTY. THRIFTY runs HDC training completely in storage while almost entirely hiding the latency of computation. Our evaluation over five popular classification datasets shows that THRIFTY is on average 1612× faster than a CPU-server and 14.4× faster than the state-of-the-art ISC solution, INSIDER for HDC encoding and training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.