Abstract

BackgroundMaternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In a rat model, both male and female offspring of undernourished mothers are programmed to become obese, however postnatal leptin treatment gives discordant results between males and females. Leptin treatment is able to rescue the adverse programming effects in the female offspring of undernourished mothers, but not in their male offspring. Additionally, in these rats, postnatal leptin treatment of offspring from normally-nourished mothers programmes their male offspring to develop obesity in later life, while there is no comparable effect in their female offspring.ResultsWe show by microarray analysis of the female liver transcriptome that both maternal undernutrition and postnatal leptin treatment independently induce a similar thrifty transcriptional programme affecting carbohydrate metabolism, amino acid metabolism and oxidative stress genes. Paradoxically, however, the combination of both stimuli restores a more normal transcriptional environment. This demonstrates that “leptin reversal” is a global phenomenon affecting all genes involved in fetal programming by maternal undernourishment and leptin treatment. The thrifty transcriptional programme was associated with pro-inflammatory markers and downregulation of adaptive immune mediators, particularly MHC class I genes, suggesting a deficit in antigen presentation in these offspring.ConclusionsWe propose a revised model of developmental programming reconciling the male and female observations, in which there are two competing programmes which collectively drive liver transcription. The first element is a thrifty metabolic phenotype induced by early life growth restriction independently of leptin levels. The second is a homeostatic set point calibrated in response to postnatal leptin surge, which is able to over-ride the metabolic programme. This “calibration model” for the postnatal leptin surge, if applicable in humans, may have implications for understanding responses to catch-up growth in infants. Additionally, the identification of an antigen presentation deficit associated with metabolic thriftiness may relate to a previously observed correlation between birth season (a proxy for gestational undernutrition) and infectious disease mortality in rural African communities.

Highlights

  • Maternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment

  • We used Illumina oligonucleotide arrays to perform expression profiling on RNA extracted from livers of female rats in 8 treatment groups, n = 8 animals per group

  • Maternal undernutrition and postnatal leptin treatment predominantly affect the same target set Whether considering all significant transcripts, or only those showing more than 1.25 fold change, the largest group of transcriptional changes represents the non-interacting effects of postweaning diet–unsurprising as diet at sacrifice directly affects the animals’ metabolic status and hepatic expression profiles

Read more

Summary

Introduction

Maternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In addition to the metabolic sequelae of maternal undernutrition, in some circumstances such deprivation can have long-lasting consequences for the immune system, for example the greatly increased prevalence of infectious disease among Gambian individuals born in the “hungry season” [12,13,14]. This latter result was not replicated in studies in rural Bangladesh or Senegal [15,16], indicating a wide degree of heterogeneity in the immune response to maternal undernutrition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call