Abstract

Theory predicts the occurrence of threshold levels of habitat in landscapes, below which ecological processes change abruptly. Simulation models indicate that below critical thresholds, fragmentation of habitat influences patch occupancy by decreasing colonization rates and increasing rates of local extinction. Uncovering such putative relationships is important for understanding the demography of species and in developing sound conservation strategies. Using segmented logistic regression, we tested for thresholds in occurrence of 15 bird species as a function of the amount of suitable habitat at multiple scales (150-2000-m radii). Suitable habitat was defined quantitatively based on previously derived, spatially explicit distribution models for each species. The occurrence of 10 out of 15 species was influenced by the amount of habitat at a landscape scale (>or=500-m radius). Of these species all but one were best predicted by threshold models. Six out of nine species exhibited asymptotic thresholds; the effects of habitat loss intensified at low amounts of habitat in a landscape. Landscape thresholds ranged from 8.6% habitat to 28.7% (x= 18.5 +/- 2.6%[95% CI]). For two species landscape thresholds coincided with sensitivity to fragmentation; both species were more likely to occur in large patches, but only when the amount of habitat in a landscape was low. This supports the fragmentation threshold hypothesis. Nevertheless, the occurrence of most species appeared to be unaffected by fragmentation, regardless of the amount of habitat present at landscape extents. The thresholds we identified may be useful to managers in establishing conservation targets. Our results indicate that findings of landscape-scale studies conducted in regions with relatively high proportions of habitat and low fragmentation may not be applicable in regions with low habitat proportions and high fragmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.