Abstract

We have analysed the field-induced conformation change of DNA by absorbance measurements at the magic angle. Conformation changes are observed when the electric field strength exceeds a clearly defined threshold value. The threshold values increase with increasing salt concentration and show a linear dependence upon the logarithm of the ionic strength. Measurements with homogeneous DNA samples of different chain lengths N show that the threshold increases with decreasing N; at a given ionic strength the threshold is a linear function of the logarithm of N. The threshold value observed for a circular DNA molecule with a chain length Nc fits to these data with an effective length Nc/2. This result indicates that the length of maximal extension is important for the field-induced reaction and suggests, together with the other results, that the field-induced reaction is mainly driven by a polarization of the ion atmosphere along the axis of DNA. Some data are also given for the dynamics of the reaction: at high electric field pulses the first step is a fast destacking and tilting of the bases followed by a slow unwinding process. For short pulses the reaction is almost completely reversible with a characteristic time constant of about 3 microseconds for the back reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.