Abstract
The purpose of this study was to establish the selfmotion perception threshold, in roll, in the visualvestibular interaction (VVI) state, creating an oculogyral illusion, and to compare this threshold to the self-motion perception threshold in darkness. A further aim was to investigate the dynamics of the threshold at a low frequency range (0.1-1 Hz) of sinusoidal rotation. Seven healthy subjects were tested. A motion platform was used to generate motion. Single cycles of sinusoidal acceleration at four frequencies (0.1, 0.2, 0.5 and 1 Hz) were used as motion stimuli. To avoid otolith stimulation, subjects were rotated about a vertical axis in supine position. To evoke an oculogyral illusion subjects were instructed to fixate their gaze on a cross-shaped object aligned with their head, which rotated with them. The results show a lowering of the self-motion perception threshold in the VVI state, significant for the frequencies 0.1 and 0.2 Hz (p<0.05). In all the subjects, visual fixation on the cross evoked an oculogyral illusion. The threshold in both tested conditions was frequency dependent: it decreased with increasing frequency values. However, this effect was consistently stronger in darkness across all frequencies (p<0.05). In conclusion, the application of sinusoidal rotation during roll at low frequencies in the VVI condition evokes oculogyral illusion. This interaction lowers the self-motion perception threshold compared to that measured during rotation in darkness. This testing method could be of practical benefit in clinical application for revealing brain dysfunction involving integrative mechanisms of perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.