Abstract
Periodical applications of immunotherapy and chemotherapy play significant roles in cancer treatment and studies have shown that the evolution of tumour cells is subject to random events. In order to capture the effects of such noise we developed a stochastic tumour-immune dynamical model with pulsed treatment to describe combinations of immunotherapy with chemotherapy. By using theorems of the impulsive stochastic dynamical equation, the tumour free solution and the global positive solution of the proposed system were investigated. We then show that the expectations of the solutions are bounded. Furthermore, threshold conditions for extinction, non-persistence in the mean, weak persistence and stochastic persistence of tumour cells are provided. The results reveal that comprehensive therapy or noise can dominate the evolution of tumours. Finally, biological implications are addressed and a conclusion is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.