Abstract

We study the threshold of epidemic models in quenched networks with degree distribution given by a power-law. For the susceptible-infected-susceptible model the activity threshold λ(c) vanishes in the large size limit on any network whose maximum degree k(max) diverges with the system size, at odds with heterogeneous mean-field (HMF) theory. The vanishing of the threshold has nothing to do with the scale-free nature of the network but stems instead from the largest hub in the system being active for any spreading rate λ>1/√k(max) and playing the role of a self-sustained source that spreads the infection to the rest of the system. The susceptible-infected-removed model displays instead agreement with HMF theory and a finite threshold for scale-rich networks. We conjecture that on quenched scale-rich networks the threshold of generic epidemic models is vanishing or finite depending on the presence or absence of a steady state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.