Abstract

Colour discrimination is based on opponent photoreceptor interactions, and limited by receptor noise. In dim light, photon shot noise impairs colour vision, and in vertebrates, the absolute threshold of colour vision is set by dark noise in cones. Nocturnal insects (e.g. moths and nocturnal bees) and vertebrates lacking rods (geckos) have adaptations to reduce receptor noise and use chromatic vision even in very dim light. In contrast, vertebrates with duplex retinae use colour-blind rod vision when noisy cone signals become unreliable, and their transition from cone- to rod-based vision is marked by the Purkinje shift. Rod-cone interactions have not been shown to improve colour vision in dim light, but may contribute to colour vision in mesopic light intensities. Frogs and toads that have two types of rods use opponent signals from these rods to control phototaxis even at their visual threshold. However, for tasks such as prey or mate choice, their colour discrimination abilities fail at brighter light intensities, similar to other vertebrates, probably limited by the dark noise in cones.This article is part of the themed issue 'Vision in dim light'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.