Abstract

AbstractDeformations of homeotropically aligned flexoelectric nematic layers induced by dc electric fields were simulated numerically. Two different anchoring strengths on the limiting surfaces were assumed. Nematic material was characterised by negative dielectric anisotropy. Both signs of the sum of flexoelectric coefficients were taken into account. The electric properties of the layer were described in terms of a weak electrolyte model. Mobility of cations was assumed to be one order of magnitude lower than that of anions. Quasi-blocking electrode contacts were assumed. The threshold voltages for deformations were determined by means of calculations of the phase difference Φ between ordinary and extraordinary light rays passing through a layer placed between crossed polarisers. The threshold values depended on the polarity of the bias voltage U. When the threshold value was exceeded, the phase difference increased with the voltage. Two different Φ(U/Uthreshold) dependencies for the two polarities of the voltage were found for each layer if the nematic possessed the flexoelectric properties. The possibility of using this effect to detect the flexoelectricity in the nematic was explored by simulated experiments. The effectiveness of the proposed method is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.