Abstract

ObjectivesShort-interval intracortical inhibition (SICI) is a paired-pulse transcranial magnetic stimulation (TMS) technique that is commonly used to quantify intracortical inhibitory tone in the primary motor cortex. Whereas conventional measures of SICI (C-SICI) quantify inhibition by the amplitude of the motor evoked potential (MEP), alternative measures involving threshold tracked SICI (TT-SICI) instead record the TMS intensity required to maintain a consistent MEP amplitude. Although both C-SICI and TT-SICI are thought to reflect inhibition mediated by γ-aminobutyric acid type A (GABAA) receptors, recent evidence suggests that the mechanisms involved with each measure may not be equivalent. This study aimed to use combined TMS-electroencephalography (TMS-EEG) to investigate the cortical mechanisms contributing to C-SICI and TT-SICI. Materials and MethodsIn 20 young adults (30.6 ± 8.1 years), C-SICI and TT-SICI were recorded with multiple conditioning intensities, using both posterior-to-anterior (PA) and anterior-to-posterior (AP) induced currents, and this was compared with the TMS-evoked EEG potential (TEP). ResultsWe found no relationship between the magnitude of C-SICI and TT-SICI within each current direction. However, there was a positive relationship between the slope (derived from multiple conditioning intensities) of inhibition recorded with C-SICI and TT-SICI, but only with a PA current. Furthermore, irrespective of conditioning intensity or current direction, measures of C-SICI were unrelated to TEP amplitude. In contrast, TT-SICI was predicted by the P30 generated with AP stimulation. ConclusionsOur findings further demonstrate that C-SICI and TT-SICI likely reflect different facets of GABAA-mediated processes, with inhibition produced by TT-SICI appearing to align more closely with TMS-EEG measures of cortical excitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call