Abstract

With continued population growth, increasing staple crop production is necessary. However, in dryland areas, this is negatively affected by various abiotic stresses, such as drought and salinity. The field screening of 10 improved genetic lines of pear millet originating from African dryland areas was conducted based on a set of agrobiological traits (i.e., germination rate, plant density, plant maturity rate, forage, and grain yields) in order to understand plant growth and its yield potential responses under saline environments. Our findings demonstrated that genotype had a significant impact on the accumulation of green biomass (64.4% based on two-way ANOVA), while salinity caused reduction in grain yield value. HHVBC Tall and IP 19586 were selected as the best-performing and high-yielding genotypes. HHVBC Tall is a dual purpose (i.e., forage and grain) line which produced high grain yields on marginal lands, with soil salinization up to electrical conductivity (EC) 6–8 dS m−1 (approximately 60–80 mM NaCl). Meanwhile, IP 19586, grown under similar conditions, showed a rapid accumulation of green biomass with a significant decrease in grain yield. Both lines were tolerant to drought and sensitive to high salinity (above 200 mM NaCl). The threshold salinity of HHVBC Tall calculated at the seedling stage was lower than that of IP 19586. Seedling viability of these lines was affected by oxidative stress and membrane peroxidation, and they had decreased chlorophyll and carotenoid biosynthesis. This study demonstrated that ionic stress is more detrimental for the accumulation of green and dry biomass, in combination with increasing the proline and malonic dialdehyde (MDA) contents of both best-performing pearl millet lines, as compared with osmotic stress.

Highlights

  • The scarcity of irrigation water and increasing soil salinization, combined with climate change variables, are threatening the sustainability of forage and grain crop production in the arid zones of the Aral Sea Basin

  • HHVBC Tall pearl millet line was the top performing in grain production (4.47 t ha−1 ), while the IP 19856 pearl millet line was distinguished by having the highest value of green and dry forage production

  • Germination when the salinity increased to 400 mM NaCl, the seed germination rate decreased almost twofold (Figure 2a)

Read more

Summary

Introduction

The scarcity of irrigation water and increasing soil salinization, combined with climate change variables, are threatening the sustainability of forage and grain crop production in the arid zones of the Aral Sea Basin. The adoption of new non-conventional crop germplasm that is able to produce good-quality green biomass levels and grain yields by reducing the salt accumulation in the root zone, which is generated by different international agricultural programs, is a novel agricultural approach for Aral Sea Basin countries [1,2]. Among the warm season cereals, pearl millet is the most heat- and drought-resistant crop [6]. It is a C4 -type photosynthesis species and is characterized by intensive growth. It is often cultivated in arid and semi-arid areas [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call