Abstract

AbstractRed blood cells are the subject of diverse studies. One branch is the observation and theoretical modelling of their behaviour in a shear flow. This work deals with the flow of single red cells suspended in solutions much more viscous than blood plasma. Below a critical shear rate (${\dot {\gamma } }_{t} $) the red cells rotate with little change of their resting shape. Above that value they become elongated and aligned in the shear field. We measured${\dot {\gamma } }_{t} $at viscosities (${\eta }_{0} $) ranging from 10.7 to 104 mPa s via observation along the vorticity of a Poiseuille flow in a glass capillary;${\eta }_{0} {\dot {\gamma } }_{t} $decreased steeply with increasing${\eta }_{0} $up to a value of 25 mPa s and remained constant for higher values. Present theoretical models are not in keeping with the measured data. Modifications of basic model assumptions are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call