Abstract
Threshold selection plays a key role in various aspects of statistical inference of rare events. In this work, two new threshold selection methods are introduced. The first approach measures the fit of the exponential approximation above a threshold and achieves good performance in small samples. The second method smoothly estimates the asymptotic mean squared error of the Hill estimator and performs consistently well over a wide range of processes. Both methods are analyzed theoretically, compared to existing procedures in an extensive simulation study and applied to a dataset of financial losses, where the underlying extreme value index is assumed to vary over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.