Abstract

Spatially-coupled low-density parity-check (LDPC) codes, which were first introduced as LDPC convolutional codes, have been shown to exhibit excellent performance under low-complexity belief-propagation decoding. This phenomenon is now termed threshold saturation via spatial coupling. Spatially-coupled codes have been successfully applied in numerous areas. In particular, it was proven that spatially-coupled regular LDPC codes universally achieve capacity over the class of binary memoryless symmetric (BMS) channels under belief-propagation decoding. Recently, potential functions have been used to simplify threshold saturation proofs for scalar and vector recursions. In this paper, potential functions are used to prove threshold saturation for irregular LDPC and low-density generator-matrix (LDGM) codes on BMS channels, extending the simplified proof technique to BMS channels. The corresponding potential functions are closely related to the average Bethe free entropy of the ensembles in the large-system limit. These functions also appear in statistical physics when the replica method is used to analyze optimal decoding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.