Abstract
This paper develops a threshold regression model where an unknown relationship between two variables nonparametrically determines the threshold. We allow the observations to be cross-sectionally dependent so that the model can be applied to determine an unknown spatial border for sample splitting over a random field. We derive the uniform rate of convergence and the nonstandard limiting distribution of the nonparametric threshold estimator. We also obtain the root-n consistency and the asymptotic normality of the regression coefficient estimator. We illustrate empirical relevance of this new model by estimating the tipping point in social segregation problems as a function of demographic characteristics; and determining metropolitan area boundaries using nighttime light intensity collected from satellite imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.