Abstract

In the present paper, internal composition and size-dependent threshold pump intensity effects on on-center impurity-related linear, third-order nonlinear and total refractive index changes are investigated in wurtzite (In,Ga)N/GaN unstrained spherical quantum dot. The calculation is performed within the framework of parabolic band and single band effective-mass approximations using a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method. According to the results obtained, (i) a significant red-shift (blue shift) is obtained as the dot size (potential barrier) increases and (ii) a threshold optical pump intensity depending strongly on the size and the internal composition is obtained which constitutes the limit between two behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.