Abstract
Multi-photon excitation in a time-of-flight mass spectrometer (TOF-MS) is shown to lead to threshold ions with defined internal energy. A powerful technique for the production of threshold ions is based on the excitation of high long-lived Rydberg states embedded in the ionization continuum. The Rydberg molecules are separated with suitable separation techniques from ions produced by a direct multi-photon ionization process. Finally, the ionization of the Rydberg molecules in a delayed pulsed electric field leads to threshold ions. This work reviews several separation techniques, and reports on applications of threshold ionization for investigation of the structure, energetics, and dynamics of neutral molecules, molecular cations, and cluster cations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.