Abstract

Gas-phase bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double ablation cluster source. The Ta(3)ZrC(y) (y = 0-4) clusters are examined by photoionization efficiency spectroscopy to extract experimental ionization energies (IEs). The IE trend for the Ta(3)ZrC(y) cluster series is reasonably similar to that of the Ta(4)C(y) cluster series [V. Dryza et al., J. Phys. Chem. A 109, 11180 (2005)], although the IE reductions upon carbon addition are greater for the former. Complementary density functional theory calculations are performed for the various isomers constructed by attaching carbon atoms to the different faces of the tetrahedral Ta(3)Zr cluster. The good agreement between the experimental IE trend and that calculated for these isomers support a 2x2x2 face centered cubic nanocrystal structure for Ta(4)ZrC(4) and nanocrystal fragment structures for the smaller clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.